Logarithmic coefficients for starlike and convex functions of complex order defined by subordination

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Properties for Starlike and Convex Functions of Complex Order

Abstract For functions f(z) which are starlike of complex order b (b = 0) in the open unit disk U introduced by M. A. Nasr and M. K. Aouf (J. Natural Sci. Math. 25(1985), 1 12), in consideration of its properties, some sufficient conditions, necessary conditions and distortion theorems with coefficient inequalities of f(z) as the improvement of the well-known result due to H. Silverman (Proc. A...

متن کامل

Fekete-szegö Inequalities for Certain Subclasses of Starlike and Convex Functions of Complex Order Associated with Quasi-subordination

In this paper, we find Fekete-Szegö bounds for a generalized class M q (γ, φ). Also, we discuss some remarkable results.

متن کامل

Applications of subordination theory to starlike functions

Let $p$ be an analytic function defined on the open unit disc $mathbb{D}$ with $p(0)=1.$ The conditions on $alpha$ and $beta$ are derived for $p(z)$ to be subordinate to $1+4z/3+2z^{2}/3=:varphi_{C}(z)$ when $(1-alpha)p(z)+alpha p^{2}(z)+beta zp'(z)/p(z)$ is subordinate to $e^{z}$. Similar problems were investigated for $p(z)$ to lie in a region bounded by lemniscate of Bernoulli $|w^{2}-1|=1$ ...

متن کامل

Subordination by Convex Functions

Let K(α), 0≤α< 1, denote the class of functions g(z)= z+∑∞n=2anzn which are regular and univalently convex of order α in the unit disc U . Pursuing the problem initiated by Robinson in the present paper, among other things, we prove that if f is regular in U , f(0) = 0, and f(z)+zf ′(z) < g(z)+zg′(z) in U , then (i) f(z) < g(z) at least in |z| < r0, r0 = √ 5/3 = 0.745 . . . if f ∈ K; and (ii) f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Malaya Journal of Matematik

سال: 2021

ISSN: 2319-3786,2321-5666

DOI: 10.26637/mjm0901/0116